断続溶接部近傍の残留応力測定結果 (ひび割れ , に隣接する健全部)

○○定のクーシ

歪みゲージ取付位置

断続溶接部近傍の残留応力測定結果

[応力値単位:MPa]

測定部位	歪みゲージNo.	溶接名	E端部	溶接中	中央部	溶接右端部	
测定即位	残留応力 ^(注)	1	2	3	4	5	6
れて、空中な	_{xx} 方向(溶接方向)	82	31	-39	111	64	63
いの割れ	_{ҳү} 方向(溶接方向に対し45°)	80	-51	35	30	51	79
	_{YY} 方向(溶接方向に対し90°)	188	37	220	48	89	19
されて、実にな	_{xx} 方向(溶接方向)	29	21	65	29	221	54
ひひ割れ 一	_{XY} 方向(溶接方向に対し45°)	62	38	109	75	54	34
	_{YY} 方向(溶接方向に対し90°)	215	108	168	8	231	78

(注)残留応力の符号

∫正∶引張応力成分

し負∶圧縮応力成分

応力値は計測された歪みより、一般的な材料定数を元に計算した値

ひび割れ , に隣接する健全部の断続溶接部近傍の残留応力を測定した結果、降伏応力程度の残留応 力が発生し得る(降伏歪み程度の残留歪みが発生し得る)ことを確認した。 (参考) ステンレス鋼(SUS304)の降伏応力: ₀₂=205MPa[規格値] 補助建家排気筒の振動計測結果

補助建家排気筒水平ダクト部及び鉛直ダクト部について、ひび割れを確認した付近の振動計 測(変位計測)を実施した。

補助建家排気筒ダクト振動計測位置(概要図)

格納容器排気筒調査結果 破面マクロ観察(ひび割れ2))

写真A

写真B

【観察結果】

・ひび割れ②は、溶接金属のほぼ中央を貫通しており、破面表面は腐食により変色している。 ・シール溶接金属部の接続鋼材も著しい腐食を受けている。

添付資料 - 17 - 2

格納容器排気筒調査結果 断面ミクロ観察(ひび割れ2))

【観察結果】

・ひび割れ20の断面は、腐食の際に現れる滑らかな凹凸が不規則に認められる。

格納容器排気筒調査結果 破面SEM観察(ひび割れ2)接続鋼材側)

格納容器排気筒調査結果 破面SEM観察(ひび割れ2)中央部)

ひび割れ21破面SEM観察位置

【観察結果】 ・ひび割れ②破面は、腐食の際に現れる滑らかな凹凸が認められる。

		硬度(ビッカー	ス換算)		
		平均	最高		
測定値	ひび割れ21 近傍部	約 385	416		
	一般部	約 175	185		

炭素鋼(SS41)の硬さ規格値はなし。

【測定結果】

・ひび割れ②近傍の溶接金属部の硬度を測定した結果、硬化した部位が認められた。

格納容器排気筒調査結果 EPMAによる分析(ひび割れ ②の破面元素分析)

[単位:重量%]

	Cl	Na	Mg	Ca	Р	S	Si	その他
ひび割れ21	0.25	2.21	1.33	0.72	0.44	0.37	1.01	93.66

(参考)

[単位:重量%]

	C 1	Na	Mg	Са	Р	S	Si	その他
一般部 (炭素鋼)	0.29	2.04	1.63	0.07	0.64	0.53	1.34	93.46

【分析結果】 ・ひび割れ②破面の元素分析を行った結果、鉄鋼材料に有害な不純物は一般部とほぼ同等であることが 確認された。

格納容器排気筒の振動計測結果

格納容器排気筒水平ダクト部および鉛直ダクト部について、ひび割れを確認した付近の 振動計測(変位計測)を実施した。

格納容器排気筒ダクト振動計測位置(概要図)

格納容器排気筒の断続溶接部に関する考察

格納容器排気筒(以下、「C / V排気筒」という)の断続溶接部については、補助建家排気筒 (以下、「A / B排気筒」という)で認められた低応力高サイクルによるひび割れは確認されていな い。

この要因について検討した結果、C / V排気筒については、

- a. 口径は1,500mm×1,000mmであり、A/B排気筒(口径2,500mm×1,000 mm)に比べて小さく剛性が高い
- b.設計風速は約18m/秒であり、A/B排気筒(約20m/秒)に比べて小さい
- c.C/V排気筒の振動計測(変位の両振幅)を行った結果、水平ダクト部下面は最大で 90µm、鉛直ダクト部正面は最大で71µmであり、A/B排気筒の約1/20程度と 小さい

ことから、C / V排気ファンの運転に伴い発生する変動応力は小さく、ひび割れが認められな かったと推定される。

添付資料 - 18

補助建家排気筒の配置上の特徴

< 振動計測結果 >

高サイクル疲労によるひび割れの発生に関する評価結果 (ひび割れ 部および 部)

1.目的

補助建家排気筒の水平ダクト部および鉛直ダクト部のひび割れ発生部の 詳細調査結果から、ひび割れの発生要因として、低応力高サイクル疲労が 抽出されたことから、ダクト内の圧力変動による振動で発生する変動応力 を算出するとともに疲労限を推定し、疲労評価を実施する。

2. 検討項目

- (1)振動による変動応力の算出
 - a . 振動応答解析
 - ・ダクト内の圧力変動を規格化した圧力変動パワースペクトルと実機 のダクト内の圧力計測結果より、実機解析用圧力変動パワースペク トルを設定する。
 - 対象ダクトを板要素でモデル化し、実機解析用圧力変動パワースペクトルを入力としたFEM解析により、ひび割れ 部および 部の変動応力(公称応力)を算出する。
 - b. 变動応力推定
 - 上記で得られた公称応力に、断続溶接部周辺をソリッド要素でモデル化したFEM解析から得られた断続溶接部の形状不連続による応力割増を考慮して、変動応力を算出する。
- (2)疲労限の推定
 - ・ 詳細調査で得られた硬さにおける材料強度(0.2%耐力 0.2 および 引張強さ _B)を求める。
 - 引張強さ _Bより定まる疲労限 S_wに断続溶接部の応力集中(応力集中係数 K₊)を考慮し、疲労限 _w(= S_w / K₊)を求める。
 - ・ 以上の材料強度から修正グッドマン線図により、平均応力 m(詳細調査で得られた残留応力、内圧・自重による応力)を考慮した疲労限 w を求める。
- (3)疲労評価
 - ・ 変動応力と疲労限を比較し、疲労破壊の可能性を評価する。

3.結果

解析および評価を実施し、以下の結果を得た。

- - a . 振動応答解析結果
 - ・ ひび割れ 部変動応力(公称応力):31.2MPa
 - ひび割れ 部変動応力(公称応力):29.3MPa
 - b. 变動応力推定結果
 - ・ 形状不連続による応力割増係数:1.6・・・・・・・《別紙1参考資料》
 - ・ ひび割れ 部変動応力:50MPa
 - ・ ひび割れ 部変動応力:47MPa
- - ・ ひび割れ 部:43 M P a
 - ・ ひび割れ 部:43 M P a
- (3)疲労評価

水平ダクト部上面板および鉛直ダクト部正面板の断続溶接部に発生す る変動応力は、疲労限を上回り疲労破壊が発生し得ることを確認した。

	変動応力 (MPa)	疲労限 (M P a)	疲労破壊の 可能性				
ひび割れ 部	50	4 3	有り				
ひび割れ 部	4 7	4 3	有り				

疲労評価結果

振動による変動応力の算出結果 (ひび割れ 部および 部)

1. 概要

補助建家排気筒の水平ダクト部および鉛直ダクト部のひび割れ発生部に ついて、ダクト内の圧力変動による振動で発生する断続溶接部の変動応力 を算出する。

- 2. 解析方法
- (1)解析フロー

解析は対象ダクトを板要素でモデル化し、ダクト曲がり部に発生する 圧力変動をメーカ試験結果より規格化した圧力変動パワースペクトルと 実機圧力計測結果を基に実機解析用圧力変動パワースペクトルを設定し、 振動応答解析を実施する。振動応答解析で得られた変動応力(公称応力) に形状不連続による応力割増を考慮し、ひび割れ 部および 部の溶接 止端部に発生する変動応力を算出する。解析フローを以下に示す。

(2)解析モデル

ダクトの補強鋼材間のダクト面を対象に、板要素を用いてダクト面を 平板にモデル化した。

拘束条件として、ダクト板と補強鋼材の断続溶接部およびダクト板コ ーナ部を固定とした。解析箇所および解析モデル図(水平ダクト部上面 板、鉛直ダクト部正面板)を図1に示す。

図1 解析箇所および解析モデル図

- (3)解析条件
 - a . 入力条件

ダクト内においては、ダクトの曲がり、拡大等によって風の流れが乱 れ、ランダムな圧力変動が生じる。この圧力変動はメーカ試験結果から 規格化した圧力変動パワースペクトルとして以下の式¹⁾で整理されてい る。これを基に実機諸元および実機圧力計測結果を反映した実機解析用 圧力変動パワースペクトルを設定した。

圧力変動パワースペクトル

()U/p²D = c²/(fD/U+X)²
 ここで、(): 圧力変動パワースペクトル
 U: 平均流速
 p²: 変動圧力の RMS 値
 f:振動数
 D: ダクト代表幅
 c:係数(=0.65)
 X: 定数(=0.2)

解析に用いた圧力変動パワースペクトルを図2に示す。

項目	諸元
平均流速 U	20 m/s
ダクト代表幅 D	1 m
変動圧力の RMS 値 p ² (実機圧力計測結果より)	水平ダクト部:21.5Pa 鉛直ダクト部:24.9Pa

表1 圧力変動の入力諸元

¹⁾ 猫本・西村ほか、空調ダクトの動的設計手法の開発、日本機械学会 2001 年度年次大会講演 論文集 (2001)

3. 振動応答解析結果

実機解析用圧力変動パワースペクトルを入力し、ダクト板のスペクトル 応答解析により変動応力(公称応力)を算出した。(表2参照)

4. 变動応力算出結果

振動応答解析で得られた変動応力(公称応力)に形状不連続による応力 割増係数を考慮して、断続溶接止端部に発生する変動応力を算出した。(表 2参照)

発生する変動応力は、

ひび割れ 部:50MPa ひび割れ 部:47MPa と推定された。

項目			評価箇所				/# +*/	
		単位	ひび割れ 音	郛	ひび割れ	部	備考	
振動応答解析による変動応力(公称応力)		M P a	31.2		29.3		(A)	
亦動広力推守	応力割増係数	-	1.6		1.6		(B)	
安動心力推進	実機変動応力	МРа	50		47		(A 🗙 B)	

表2 振動による変動応力の算出結果

形状不連続による応力割増係数について

1. 概要

断続溶接部近傍は形状不連続により一般部より応力が大きくなる。この ため、断続溶接部をFEM解析(ソリッド要素)によりモデル化し、

取得不通結に トス 広力 割増係 粉 –	<u> 形状不連続による局部応力 </u>
形状小连続による心力割増除数-	公称応力
を求める。	

2.評価手法

シェルモデルの振動応答解析結果から得られる1次モードの振動変位に より断続溶接止端部に発生する応力について、シェルモデルおよびソリッ ドモデルによる解析結果の比較を行い、形状不連続による応力割増係数を 評価する。

3.シェルモデルによる応力解析

水平ダクト部上面板の応力解析に使用した解析モデル(シェルモデル) により、1次モードに対する変位および発生応力を求めた。

1次モードで正規化された変位に対する最大応力は8.5MPaとなった。

- 4.ソリッドモデルによる応力解析
- (1)解析モデル

シェルモデルの中央位置の断続溶接部(すみ肉溶接)について接続鋼 材部を含めモデル化し、応力を算出した。解析モデルを図1に、境界条 件を図2に示す。

添付資料 - 19 別紙1 参考資料(2/3)

図2 境界条件

(2)解析方法

シェルモデルによる振動応答解析(1次モード)で得られた変位によ り断続溶接部に発生する応力を算出する。 5.形状不連続による応力割増係数

4.ソリッドモデルによる応力解析により得られた応力分布を図3に示す。 最大応力は17.2MPaであるが、これには断続溶接部の応力集中効果が含まれ ていると考えられるため、断続溶接止端部の局部最大応力は13.7MPaとし、 3.シェルモデルの最大応力値と比較した。

その結果は表1に示すとおりであり、形状不連続による応力割増係数は1.6 程度と考えられる。

図3 ソリッドモデルによる応力分布

解析モデル	最大応力[MPa]	応力割増係数				
シェルモデル	[A] 8.5	[B/A]				
ソリッドモデル	[B] 13.7	1.6				

表1 最大応力の比較

断続溶接部の疲労に関する検討結果 (ひび割れ 部および 部)

1.疲労限の求め方

疲労限は、材料の硬さ、使用温度、応力集中係数および平均応力に影響を受ける。 以下に、上記各要因を考慮した疲労限を求める手順を記載する。

- (1)材料強度から疲労限の推定
 - a.硬さ測定データから室温の引張強さを推定する。
 - b.使用温度での引張強さを求める。
 - c.引張強さと疲労限の関係から、使用温度での疲労限を推定する。
- (2)応力集中の影響を考慮した疲労限((1) c で求めたもの)の補正
- (3)平均応力の影響を考慮した疲労限((2)で求めたもの)の補正

2.材料強度からの疲労限の推定

材料強度から疲労限の評価を行うには、損傷部の使用温度における引張強さのデー タが必要である。

しかしながら、損傷部の使用温度における引張強さを直接的に求めることはできないので、下記の手順で推定する。

- (1)ひび割れ 部、 部の金属調査において測定した硬度測定データ(ひび割れ 近傍部の硬さ)から、図1より引張強さを推定する。なお、図1は室温にて 採取されたデータである。
- (2)損傷部の設計温度は40 である。告示第501号別表10に記載のSUS304(冷間圧延ステンレス鋼板及び帯板)の設計引張強さは-30~40 において同じ値であるため、ひび割れ部の使用温度での引張強さは(1)で求めた値を用いる。
 :補助建家排気筒ダクトの設計温度は40 である。これは補助建家の設計温度(40) から定められている。

(3)(2)の引張強さから図2より使用温度での疲労限を推定する。

材料強度からの疲労限の推定結果を表1に示す。

表1 硬さから求めた疲労限

	硬さ (HV)	0.2%耐力 _{0.2} (MPa)	引張強さ _в (MPa)	硬さから求めた 疲労限 S _w (MPa)
ひび割れ 部	238	530	770	284
ひび割れ 部	236	523	766	284

図1 室温での硬さと 0.2%耐力および引張強さの関係 (出典:ステンレス鋼便覧 第3版)

3.応力集中の影響を考慮した疲労限の補正

溶接部のように材料表面に不連続部がある場合には、応力集中による疲労限の低下 を考慮する必要がある。1項で求めた疲労限を応力集中係数K_tで除したものが、補正 後の疲労限 wとなる。補正後の疲労限 wを表2に示す。

	硬さから求めた 疲労限 S _w (MPa)	応力集中係数 K _t	応力集中を考慮した 疲労限 _w (MPa)
ひび割れ 部	284	2.6	109
ひび割れ 部	284	2.6	109

表2 応力集中の影響を考慮した疲労限

- 4.平均応力の影響を考慮した疲労限の補正
- 4.1 平均応力として考慮すべきもの

ひび割れが発生した断続溶接部に平均応力として作用するものは、(1)残留応力、 (2)内圧および自重による応力がある。

(1)残留応力

ひび割れ 部、 部に隣接する健全部の断続溶接部近傍の残留応力測定結 果から、当該部には降伏応力程度の残留応力が発生し得ることを確認した。 これより、当該部の残留応力について、硬度測定結果を考慮して推定した結 果を表3に示す。

	硬さ ¹ (HV)	残留応力 ² (MPa)
ひび割れ 部	200	400
ひび割れ 部	204	420

表3 残留応力推定結果

1:ひび割れ 部、 部の一般部(ひび 割れ付近)の測定硬度平均値

2:硬さから定まる 0.2%耐力(降伏応 力相当)を右図から求めた

(2)内圧および自重による応力

運転時内圧およびダクトの自重により断続溶接部に発生する応力は、運転 時内圧によるダクト板面の挙動による応力評価、ダクトの支持構造を考慮し て求めた。この結果、内圧および自重による応力はひび割れ 部で 63MPa、 ひび割れ 部で 44MPa であった。

以上より平均応力を纏めると表4のとおりとなる。

	[A]	[B]	[A]+[B]		
	残留応力 (MPa)	内圧および自重 による応力 (MPa)	平均応力 m (MPa)		
ひび割れ 部	400	63	463		
ひび割れ 部	420	44	464		

表4 平均応力の纏め

4.2 平均応力の影響を考慮した疲労限の補正方法

平均応力は疲労限を低下させることから、その影響を修正グッドマン線図にて補正 した。修正グッドマン線図 による補正方法の概要を以下に示す。

> :疲労限に影響を及ぼす平均応力の影響は、図3のようにX軸に平均応力を、Y軸に 平均応力が零の時の疲労限 wをとって、右下がりの直線で表される。この直線を「修 正グッドマン線図」という。 そこで、任意の平均応力 mでの疲労限 w, は、その平均応力値に立てた垂線が修正 グッドマン線図と交わる高さで与えられる。

■ 平均応力を考慮した疲労限(w)は下式で求められる。

w'= w×((в- m)/ в)・・・・・・ 式(図3 直線)

■ ただし、平均応力(m)を考慮した疲労限(w)と平均応力(m)の和が 0.2% 耐力(0.2)を超えることはない(塑性領域に入るため)。

w⁺ m 0.2 · · · · · · 式(図3 直線 とX,Y軸で囲まれる範囲)

- したがって、 式を 式に代入することにより、平均応力の最大値(m0)が求まる。
 m0 = B×(0.2 W)/(B W)
- 平均応力(m)が平均応力の最大値(m0)を超える場合には、 m = m0として平 均応力を考慮した疲労限(w)を求める。

$$w' = w \times (B - 0.2) / (B - w)$$

4.3 平均応力の影響を考慮した疲労限の補正結果 平均応力の影響を考慮した疲労限の補正結果を表5に示す。

	応力集中を考慮 した疲労限 _w ¹ (MPa)	平均応力 _m (MPa)	平均応力を考慮 した疲労限 _w (MPa)
ひび割れ 部	109	463	43
ひび割れ 部	109	464	43

表5 平均応力の影響を考慮した疲労限

: 平均応力を考慮しない疲労限

事象発生の推定メカニズム(疲労損傷) (ひび割れ①~①、③~20)

運転開始

事象発生の推定メカニズム(腐食損傷) (ひび割れ①2①)

補助建家排気筒·格納容器排気筒復旧概要図 (補助建家排気筒)

添付資料 - 22 (1 / 2)

補助建家排気筒·格納容器排気筒復旧概要図 (格納容器排気筒)

